Growth cone collapse and inhibition of neurite growth by Botulinum neurotoxin C1: a t-SNARE is involved in axonal growth
نویسندگان
چکیده
The growth cone is responsible for axonal growth, where membrane expansion is most likely to occur. Several recent reports have suggested that presynaptic proteins are involved in this process; however, the molecular mechanism details are unclear. We suggest that by cleaving a presynaptic protein syntaxin, which is essential in targeting synaptic vesicles as a target SNAP receptor (t-SNARE), neurotoxin C1 of Clostridium botulinum causes growth cone collapse and inhibits axonal growth. Video-enhanced microscopic studies showed (a) that neurotoxin C1 selectively blocked the activity of the central domain (the vesicle-rich region) at the initial stage, but not the lamellipodia in the growth cone; and (b) that large vacuole formation occurred probably through the fusion of smaller vesicles from the central domain to the most distal segments of the neurite. The total surface area of the accumulated vacuoles could explain the membrane expansion of normal neurite growth. The gradual disappearance of the surface labeling by FITC-WGA on the normal growth cone, suggesting membrane addition, was inhibited by neurotoxin C1. The experiments using the peptides derived from syntaxin, essential for interaction with VAMP or alpha-SNAP, supported the results using neurotoxin C1. Our results demonstrate that syntaxin is involved in axonal growth and indicate that syntaxin may participate directly in the membrane expansion that occurs in the central domain of the growth cone, probably through association with VAMP and SNAPs, in a SNARE-like way.
منابع مشابه
Rac1 mediates collapsin-1-induced growth cone collapse.
Collapsin-1 or semaphorin III(D) inhibits axonal outgrowth by collapsing the lamellipodial and filopodial structures of the neuronal growth cones. Because growth cone collapse is associated with actin depolymerization, we considered whether small GTP-binding proteins of the rho subfamily might participate in collapsin-1 signal transduction. Recombinant rho, rac1, and cdc42 proteins were tritura...
متن کاملSubcellular localization of tetanus neurotoxin-insensitive vesicle-associated membrane protein (VAMP)/VAMP7 in neuronal cells: evidence for a novel membrane compartment.
The clostridial neurotoxin-insensitive soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptors, tetanus neurotoxin-insensitive (TI)-vesicle-associated membrane protein (VAMP)/VAMP7, SNAP23, and syntaxin 3 have recently been implicated in transport of exocytotic vesicles to the apical plasma membrane of epithelial cells. This pathway had been shown previously to be insensit...
متن کاملA signaling mechanism coupling netrin-1/deleted in colorectal cancer chemoattraction to SNARE-mediated exocytosis in axonal growth cones.
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross tal...
متن کاملOligodendrocytes arrest neurite growth by contact inhibition.
We have used video time-lapse microscopy to analyze in vitro the interactions of growth cones of newborn rat dorsal root ganglion cells with dissociated young rat CNS glial cells present in the cultures at low density. To provide optimal conditions for neurite extension, cells were grown on laminin and in NGF-supplemented medium. Our initial observation showed that there are 2 subpopulations of...
متن کاملLentiviral Mediated Expression of Soluble Neuropilin 1 Inhibits Semaphorin 3A-mediated Collapse Activity in Vitro
Introduction: Semaphorin 3A (Sema 3A) is a secreted protein, which plays an integral part in developing the nervous system. It has collapse activity on the growth cone of dorsal root ganglia. After the development of the nervous system, Sema 3A expression decreases. Neuropilin 1 is a membrane receptor of Sema 3A. When semaphorin binds to neuropilin 1, the recruitment of oligodendrocyte precurso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 134 شماره
صفحات -
تاریخ انتشار 1996